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Dewetting hydrodynamics in 1¿1 dimensions

H. Müller-Krumbhaar, H. Emmerich,* E. Brener, and M. Hartmann
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A model for the phase transition between partial wetting and dewetting of a substrate has been formulated
that explicitly incorporates the hydrodynamic flow during the dewetting process in 111 dimensions. The
model simulates a fluid layer of finite thickness on a substrate in coexistence with a dry part of the substrate
and a gas phase above the substrate. Under nonequilibrium ‘‘dewetting’’ conditions, the front between the dry
part and the wet part of the surface moves towards the wet part inducing hydrodynamic flow inside the wet
layer. In more general terms, the model handles two immiscible fluids with a freely movable interface in an
inhomogeneous external force field. Handling the interface by a new variant of the phase-field model, we
obtain an efficient code with well-defined interfacial properties. In particular, the~free! energy can be chosen
at will. We demonstrate that our model works well in the viscosity range of creeping flow and we give
qualitative results for the higher Reynolds numbers. Connections to experimental realizations are discussed.

DOI: 10.1103/PhysRevE.63.026304 PACS number~s!: 47.20.Ma, 68.08.Bc, 64.60.My, 83.50.Lh
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I. INTRODUCTION

Wetting and dewetting of a substrate by a film of fluid
a particularly interesting process of pattern formation w
obvious significance in many technical applications of s
face coating. In this phenomenon, various ingredients
equilibrium thermodynamics, diffusion and convection tran
port on different time scales, together with nonlocal effe
and external fields have to be considered simultaneou
Furthermore, the freely mobile interface between the fl
wetting layer and the gas phase above the substrate is
ceptible to various forces, leading to interface-driven ins
bilities such as, for example, the Marangoni effect.

In the phenomenon ofpartial wetting@1# considered here
a thin film of well-defined thickness is formed on the surfa
of a substrate. The forces responsible for this film are
addition to the cohesive forces between water molecule
der Waals forces and polar forces@1–3# from the substrate
The statics and dynamics of such a film on a substrate h
been discussed in detail, e.g., by Sharma and Jameel@4#,
Israelachvili @5#, Forgacset al. @1#, and by De Gennes@2#.
Recently, beautiful experiments have been performed
Lipson et al. @6#, Herminghauset al. @8#, continuing and ex-
tending earlier work by Reiter@9# and Brochard-Wyartet al.
@3#. In the experiments of Lipson’s group@6#, it was found
that the patterns observed correspond to seaweed pat
discovered recently for the case of diffusional transport@10#.
This is to be expected since in the limit of creeping flo
corresponding to low Reynolds numbers or high viscos
the hydrodynamic flow equation for dewetting degenerate
a diffusion equation with an effective diffusion constant i
versely proportional to the viscosity. This is quite analogo
to Darcy’s law of flow in porous media.

As we have demonstrated, this effective diffusion eq
tion, being of Cahn-Hilliard-type@11#, corresponds in a lin-
ear approximation to the growth model studied in the cont
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of two-dimensional interfacial pattern formation under is
tropic conditions@10,12#. Our interest is now to understan
what happens if the conditions for replacing the Navi
Stokes equations by an effective diffusion equation are
longer valid. For higher Reynolds numbers, significa
changes due to increasing vorticity in the inertial range
wavelengths should be expected.

We have constructed a model together with a numer
scheme that allows us to treat the full Navier-Stokes eq
tions for this wetting-dewetting problem. As a first step a
to keep the computational effort as low as possible,
present investigation is still restricted to a~111!-
dimensional system that corresponds to a planar cut per
dicular to the substrate. Therefore, it cannot be directly
lated to the pattern-formation experiments described ab
since these involve real three-dimensional instabilities a
material redistribution. However, since our approach to
full dewetting problem even now incorporates the regim
where the full Navier-Stokes equations come into play a
dominate the overall behavior, it already can give first
sights into the general physics of these systems, which h
not been treated so far. Even though we are still restricte
a simple~111!-dimensional description, one still can thin
of experimental realizations where this geometry is enfor
by some external conditions. A possible realization would
the dewetting of a thin film starting from a linear fron
which is induced by a short heat pulse of a straight w
within the plane of the fluid. Clearly this description is on
valid as long as no front instabilities occur. We plan to e
tend our model to a full three-dimensional description
order to facilitate pattern-formation simulations and quan
tative comparisons to the experiments mentioned above.

Our x coordinate represents the direction parallel to
surface of the substrate, which is located atz50. The z
coordinate represents the normal direction away from
substrate into the gas phase. Since the energetic properti
the system are different close to the substrate and far a
from the substrate, we have essentially to distinguish
tween three different phases: the remote gas phase, the
layer on the substrate, and the dry region on the subst
©2001 The American Physical Society04-1
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The latter two phases can be conveniently described b
tanh(x)-shaped height profile above the substrate as an e
lope over the liquid film. In this sense the wet surfacex
→`) corresponds to a moderately thick fluid layer, while t
dry surface (x→2`) corresponds to an extremely thin flu
layer adsorbed on the substrate. The tanh-shaped profile
represents a front separating the wet and the dry region
x50 under equilibrium conditions.~Of course, the precise
profile finally results from the solution of the model; it ma
practically differ from a tanh form.! Under nonequilibrium
conditions the profile will advance, hereby increasing the
area on the substrate under dewetting conditions and
versa.

The paper is organized as follows. In Sec. II, we descr
the basic model in more detail. In Sec. III, we explain o
general scheme of hydrodynamic modeling, which is f
lowed by a section containing the specific modifications
handle the dewetting process~Sec. IV!. In Sec. V, we presen
and discuss our first results.

II. BASIC MODEL IN CREEP FLOW

In this section, the effective equations of motion for
drying thin film originally wetting a substrate are summ
rized for the limit of high viscosity or creeping flow. Thes
equations are equivalent to the one-sided model of di
sional growth with an effective diffusion coefficient that d
pends on the viscosity and on the thermodynamical pro
ties of the thin film.

According to the description given in Sharma@4# and De
Gennes@2#, there is a possibility for the almost dry part o
the solid substrate to be in equilibrium with the wet pa
which is in fact a thin~but macroscopic! film of liquid. Both
parts~dry and wet! on the solid substrate are separated b
front, which can be described by an interface height varia
h(x) with x being the coordinate across the front from t
dry to the wet part. Towards the dry part, the height varia
goes to a very small valueh2 ; towards the wet part, the film
thickness goes to an equilibrium valueh`(p) for given pres-
surep with a coexisting vapor phase. At a specific press
p0, the liquid film can additionally be in equilibrium with th
~almost! dry surface. The corresponding thickness of the w
film is then defined ash05h`(p0). For lower vapor pres-
sure, the equilibrium film thicknessh`(p) would decrease to
a metastable value smaller thanh0. Therefore, the stable dr
area would expand at the cost of the wet area. This is
dewetting phenomenon under consideration.

We assume a surface tensiong to exist between the liquid
and the vapor. The free energy of the film can then be writ
as

G5E H g„h~x,y!…1
g

2
u¹hu2J dx dy, ~1!

where g(h) has two minima, andx and y are coordinates
within the plane of the substrate.

In equilibrium a double-tangent construction tog(h)
gives the two solutionsh2 for the dry part andh0(p) for the
02630
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wet part of the surface. This leads to the evolution equat
@4,6# for the film variableh(x,y;t):

]h

]t
5“•

h3

3h
“Fdg~h!

dh
2g¹2hG2aFdg~h!

dh
2g¹2h2m~p!G .

~2!

The first part of Eq.~2!, proportional to the inverse vis
cosityh21 of the liquid film, describes a creeping motion o
a thin-film flow on the substrate. Note that a relaxation te
proportional toa has been added. This term alone guarant
that a homogeneous liquid film will relax to its equilibrium
value by evaporation or condensation. Forh5h`(p), this
term vanishes.m(p) is the chemical potential of the vapor

In the~almost! dry area, the contributions of both terms
the total flow and evaporation of material can be basica
neglected, because of the small value ofh2 , typically less
than one monolayer of adsorbed fluid. Inside the wet a
we can to lowest order linearizeh5h`@11u(x,y)#, whereu
is now a small deviation from the asymptotic equilibriu
value h`(p) in the liquid. Since“h`(p)[0, the only sur-
viving terms are linear inu and its spatial derivatives“u and
Du. Therefore, inside the wet area, the evolution equation
the variable partu of the height variableh becomes

]u

]t
5DeffDu2leffu. ~3!

Here we have dropped the terms;gD2u since the effective
diffusion constantDeff5(h0

3/3h)$d2g/dh2%1ag is positive
and dominates the long-wavelength behavior over the fou
order term. The relaxation coefficient isleff5a$d2g/dh2%.
Derivatives are taken around the equilibrium valueh5h0.
Note that Eq.~3! is precisely the equation of motion studie
in @13#, leading to seaweed patterns.

Of course, this approximation holds only inside the w
region, not directly at the dry-wet front. This interface regi
gives rise to a profileh(x) similar to a tanh function. The
rising of the tanh profile from the dry to the wet part occu
over a distance short compared to the typical patterns b
observed in the dewetting process. In the so-called sh
interface limit, we can replace this profile by a sharp int
face between the dry and the wet part, but must add
corresponding boundary conditions to the equation of mot
~3! for the wet side. Obviously, the boundary conditions co
sist of a conservation law that guarantees that a displacem
of the dry-wet front must locally conserve the fluid. Und
dewetting conditions, this leads to a swelling of fluidu.0 at
the interface. The second condition clearly comes from
surface tensiong, which tends to keep the dry-wet fron
straight. This is just the usual Gibbs-Thomson condition
an interface, with the capillary length being approximate
d0'g/@$d2g(h)/dh2%l #, where l is the thickness of the
dry-wet interface or front, and the dimensionless drivi
force isD5(h02h`)/h0. In summary, we have for this vis
cous fluid-flow problem of surface dewetting exactly t
same equations as for the diffusional growth of an isotro
solid.
4-2
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III. HYDRODYNAMICS OF TWO-FLUID SYSTEMS

Incompressible hydrodynamic flows with a free interfa
as considered here are described by the incompres
Navier-Stokes equations

]uW

]t
1~uW •“ !uW 5

1

r
~2“p1hDuW 1 fWs!, ~4!

“•uW 50. ~5!

In these equations,uW is the velocity vector andp is the
pressure. The densityr and the kinematic viscosityn5h/r
are constant inside each of the two fluids, but may vary d
continuously across the interface. The forcefWs in principle
can be an arbitrary local force field defined everywhere
space just like, for example, a gravitational force. Here
assume that it is a force localized at the interface between
fluid on the substrate and the gas. Any bulk force, which
the gradient of some fixed potential, will be immediate
compensated by a change in the pressure and therefore
no contribution to the equation of motion Eq.~4!.

The question now is how can this interface be hand
conveniently by numerical methods? We follow here co
cepts given in Refs.@14–16#, together with some ingredient
of our own experience in phase transformations@17#. We use
here what is known in fluid dynamics as thevolume-of-fluid
approach@15,16,18–20#, which in the theory of phase tran
sitions corresponds to thephase-field modelfor two-phase
systems and generalizations@21–23#. A consistent phase
field model with hydrodynamic flow was recently formulate
@24#. This method smears out the sharp interface over so
nonzero but finite thicknessds , so that the material param
eters do not jump discontinuously but vary continuou
across that interface. Note that the thickness of this interf
ds between two phases in reality corresponds to a few ato
units. For computational purposes, it should therefore
small compared to all macroscopic lengths occurring in
model, since the Navier-Stokes equations correctly desc
only macroscopic properties of hydrodynamic systems.
will return to this point in the discussion of the results.

In comparison with sharp-interface methods, one lose
factor approximately between 10 and 100 in computatio
efficiency, but the advantage of much simpler programm
of multiphase problems seems to be worth the expendit
Similar arguments hold for the alternative lattice-Boltzma
methods @25,26# or a recent molecular-dynamics stud
where hole formation and the initial stage of dewetting h
been simulated@27#. Both methods reconstruct the macr
scopic equations from the microscopic dynamics of part
collisions. The computational efforts of these smear
interface methods seem to be comparable. However, we
fer here the somewhat more direct and intuitive access by
phase-field approach.

The basic idea of the phase-field method is that a ph
field f varies across the liquid-gas interface continuou
from f521 for the liquid tof51 for the gas~the associa-
tion of numbers to the phases is of course arbitrary; zero
02630
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one would also be possible!. This variation takes place ove
the interface thicknessds . The normal vectornW to the inter-
face is defined as

nW 5“f/u“fu, ~6!

which can directly be used for numerical approximatio
when all fields are defined in discretized form on a regu
lattice. Since the normal vector to the interface is on
needed at the interface (xW5xW s), we typically encounter a
combination of normal vector andd function, which can be
described simply by

nW d~xW2xW s!5 1
2“f. ~7!

With this definition, a surface forcefWs0 only due to the
local curvatureK of the interface and the surface tensiong is
given by

fWs05gKnW d~xW2xW s!. ~8!

This allows us to vary the surface tensiong independent
of the phase-field parameters as compared with@24#. The
practical evaluation of the curvatureK is done via the defi-
nition that the curvature of a line~in two dimensions! is
equal to the divergence of the field of normal vectors alo
that line. This can be generalized to a two-dimensional fi
of normal vectors asK5“•nW . The curvature is then evalu
ated everywhere in the$x,z% plane by straightforward dis
cretization. Finally, a smoothing operation is performed
the curvature field inside the interface region. This is do
similarly to a diffusion time step so that the curvature field
almost constant in normal direction across the interface.

The phase field now couples to the Navier-Stokes eq
tion ~4! via the surface force~8!,

fWs5 fWs0 , ~9!

and the Navier-Stokes equation couples back to an equa
of motion for the phase field via an advection equation,

]f

]t
52uW •“f1F$f%. ~10!

A nonlinear operatorF$f% has been added here for nume
cal reasons in order to locally maintain a well-defin
S-shaped profile off in normal direction across the inter
face, as will be made explicit below.

In principle, Eqs.~4!–~10! form a closed system of equa
tions in space and time~with appropriate boundary and ini
tial conditions, and assuming for the moment all materi
parameters to be homogeneous and constant!, apart from the
evaluation of the pressure gradient“p in Eq. ~4!. We have
used a simple marker and cell method~MAC! scheme for the
moment, but plan to implement more complex schem
@16,20# in the near future to solve the Poisson equatio
which one obtains for the pressure after applying a furt
divergence operator onto Eq.~4!. We have also kept the den
sities in the liquid and in the ‘‘gas’’ equal for the moment,
4-3
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well as the kinematic viscosities. This may sound a bit u
physical at first, but it does not change substantially the b
physical problem of dewetting hydrodynamics, as we w
discuss in the final section. The reason for this present s
plification is just to facilitate computation~see, for example
@16#!. Therefore, we will maintain the notion ‘‘gas’’ an
‘‘liquid’’ to discriminate between the phases, although th
materials parameters for the moment are just equal.

The numerical implementation closely followed earli
experiences@16,20,28#, with our simpler use of a MAC
scheme and forward integration instead of multigrid-press
evaluation and implicit@alternating-direction implicit method
~ADI !# schemes, which we plan to incorporate in the futu
As tests we have reproduced features described in@16#; fur-
thermore, we have confirmed the dynamical spectrum of c
illary surface waves within a few percent.

To close this section, we briefly describe the numeri
method to keep a well-defined S-shaped interface profile
the f variable by the operatorF$f% in Eq. ~10!. Based on
previous experience with phase-field simulations, we de
this nonlinear operator as

F$f%5
1

t
$j2nW •“~nW •“f!1V0~f2f3!% ~11!

with parametersj52,t50.4,V051 ~the precise values ar
not critical!. Herej2 multiplies a second-order derivative i
normal direction across the interface, which has a tende
to smooth out the phase field, while the term withV0 tries to
keepf as a step functionf561. Note that in contrast to
the usual phase-field models@17,21,24#, we decompose the
spatial variations of the phase fieldf near the interface (f
'0) into a part parallel to the interface and a part norma
the interface. The two Nabla operators in Eq.~11! only work
in the direction normal to the interface. Dropping here t
tangential terms in the spatial variations, we have a mo
with vanishing surface tension. This holds in the physica
interesting limit, where the radius of interface curvature
larger than the interface thickness. We are therefore fre
choose the interface free energy. In addition, the model m
be used as a basis to study membranes, which have inte
stiffness rather than interface tension.

In the stationary case~with uW 50), Eq.~11! together with
Eq. ~10! give a profilef'tanh(xn /ds) in normal direction
across the interface, with well-defined interface thickn
ds'j/AV0. In principle, this operator does not exactly co
serve the quantityf, so one should have once more a L
placian operating over the whole right-hand side of Eq.~11!.
Since this would increase computing time, we used a sim
modification to keep this effect small: In the space- and tim
discretized version, we set this operatorF$f% exactly equal
to zero during one time step if its absolute value through
the computational lattice does not exceed a critical thresh
of dF052. Again, this numerical value is not critical. A
circular droplet of radiusR>2.5, for example, will not
shrink to zero due to a remaining effective surface tens
introduced by the discretization of Eq.~11!. In total, we
02630
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found all tests performed to be in sufficient agreement w
the results given by Lafaurieet al. @16#.

IV. HYDRODYNAMIC MODEL FOR WETTING

In this section, we now describe the specific modificatio
of the general hydrodynamic model introduced above in
der to treat the wetting-dewetting process.

In equilibrium thermodynamics, partial wetting of a su
strate means the possibility of a thin wet layer of finite thic
ness to exist on the substrate in coexistence with a dry pa
the substrate and a gas phase above the liquid film. Since
want to model the front between the dry and the wet part
a tanh-like profile, we will describe the dry part by a heig
h(x) of the wetting layer being almost zero, while for th
wet part we assume a height of nonzero but finite thickne
Above that tanh-like profile, we have a pure vapor pha
Note that both the wet and the dry part of the substrate
covered with fluid, the difference being that the fluid layer
the ‘‘dry’’ part is much thinner~maybe even less than on
atomic unit practically! than the wet part.

To be explicit, we show in Fig. 1 such a profile where t
horizontal axisx is the position on the substrate while th
vertical axis represents the heighth(x) or the direction away
from the substrate in the normal direction. The units here
given in lattice units of the computational grid (400330),
which corresponds with a lattice constant ofdx50.5 ‘‘physi-
cal’’ units to 200315 ‘‘physical’’ units of distance.

The initial profile is given as a step function jumping wi
increasingx at x5100 from z58.5 to z520.5, all values
given in lattice units (dx50.5). Note that the equilibrium
height ~to be defined below! of the wet part would corre-
spond to 22.5 lattice units~corresponding to 11.25 ‘‘physi-
cal’’ units! so that the structure initially is in a nonequilib
rium condition. Below and to the right of the step function
Fig. 1 is the ‘‘liquid’’ with f521; above and to the left is
the ‘‘gas’’ phase withf511.

FIG. 1. Dewetting process in 111 dimensions. The origina
front separating the dry and wet parts of the substrate was give
a step function, at lattice position 100. During the dewetting p
cess, the front moves towards the wet part at the right. The u
given here are lattice units, one lattice unit corresponding to o
half ‘‘arbitrary unit’’ ( dx50.5, n512).
4-4
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The equilibrium positions of the gas-liquid interface in t
wet and the dry regions of the substrate are defined by
external double well potentialg„h(x)… acting on the inter-
face. It summarizes the Van der Waals and polarizat
forces due to the substrate and is explicitly described
@2,4,7,29#. However, for the study of scaling propertie
~which do not depend in detail on specific material prop
ties! it is only necessary to identify the potential near
equilibrium positions. The equilibrium positionsh2 and
h`(p) result from a double-tangent construction tog(h). To
facilitate the location of these minima, we replaced this p
tential by a potential symmetrical in the two minima a
sitting on the same energy level:

Uw5U0 sin~kz1kz0!. ~12!

It varies in direction normal to the substrate and is cons
parallel to the substrate. This potentialUw corresponds to the
potentialg„h(x,y)… in Eq. ~1!, where thez coordinate in Eq.
~12! corresponds toh(x) in g(h). ~In our present work we
only keep one spatial coordinatex at the moment.! Note that
adding a constant gradient in Eq.~2! as g(h)→g(h)1ch
with arbitraryc only changes the definition of the chemic
potential m(p)→m(p)1c of the gas and therefore corre
sponds to a trivial change.

In principle, this potential should have only two minim
one within one atomic layer close to the substrate and on
distance of some 103 nanometers above the substrate. T
one minimum corresponding to the gas phase very clos
the substrate would be much narrower than the other
corresponding to the wet layer. For reasons of testing
numerical procedure, we took here a potential with fu
symmetrical minima nearz5$4.25,11.25% while the other
oscillations of that sine potential were irrelevant within o
numerical investigations.

This potential produces a force

fWs15d~xW2xW s!nW •@nW •“Uw~z!# ~13!

onto the interface between the liquid and the gas phase.
force is proportional to the gradient of the potential but a
in normal direction of the liquid-gas interface only, othe
wise it would produce a constant tangential flow in interfa
regions with normal direction parallel to the substrate~Ma-
rangoni effect!. In equilibrium, this force must compensa
for the forcesf s0 in Eq. ~8! originating from interface curva
ture, which also act in normal direction to the interface.

The total force acting on the interface is then the sum
the curvature force Eq.~8! and the force originating from the
external potential Eq.~13!:

fWs5 fWs01 fWs1 . ~14!

Some basic parameters were set as follows. The la
consisted of typically 30 units in direction normal to th
substrate and up to 1200 in a direction along the surfac
the substrate.

The geometry was for the moment only two-dimension
The lattice constant was set in physical units asdx50.5 or
smaller and the time step for forward integration was cho
02630
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appropriately to guarantee the numerical stability of the d
ferential equations involved. The surface tension wasg
53.18 and the wall potential near the two minima was tak
as Uw5sin(kz1kz0) with k52p/7, z051 and with minima
relevant for the ‘‘dry’’ part and the ‘‘wet’’ part atz54.25,
11.25. This corresponds to a total thickness of the wet la
in coexistence with a dry surface part ofdh57 in our physi-
cal units. Note that assigning specific values to the units
dx anddt fixes all length scales, the time scales, and velo
ties. In these units, the kinematic viscosity was set to val
betweenn50.5 and 16; the density was set tor51.

The boundary conditions for the fluid were sticking co
ditions or velocity zero on both the bottom and on the sid
of the grid. On the top of the grid we applied a fixed press
condition~bearing in mind the incompressibility of the fluid!,
thereby granting a free-flow condition at the top.

The complete system of equations then are Eqs.~4!–~8!
and Eqs.~10!–~14!. We have confirmed numerically that th
forces give a stationary nonmoving S-shaped front profile
the $x,z% plane under equilibrium conditions as desired.

V. RESULTS AND DISCUSSION

An experiment on the dewetting transition ideally wou
start from an equilibrium condition with a dry and a wet pa
of the surface in coexistence. The heights of the liquid la
on the dry part would be practically zero, and of some fin
value ~of order of microns, for example! on the wet part.
Nonequilibrium is then achieved by suddenly lowering t
gas pressure above the substrate. The dry part of the
strate would not react significantly, while the wet part wou
evaporate to a new equilibrium at a somewhat lower hei
of the liquid layer.

This is the starting condition for our simulation: We kee
the height of the dry part positioned in the minimum of t
potential Eq.~12! close to the origin while the height of th
wet part is shifted out of the minimum to a slightly small
value.

In this situation, the dry part is energetically favorable
that the front between the dry and the wet part starts mov
towards the wet part at the right in Fig. 1. Because of c
servation of fluid on both sides of the liquid-gas interfac
such a displacement of the wet-dry front leads to a redis
bution of material thereby creating a pronounced bump.
the full three-dimensional scenario, this redistribution u
mately leads to the patterns observed in the dewetting exp
ments. Clearly in our still two-dimensional scenario, this p
tern formation cannot be fully described, yet already ba
predictions about the low viscosity behavior can be made
will be seen below.

There are several physical parameters in the model
cluding the density and the viscosity of the fluid, as well a
number of numerical parameters such as the constantV0 in
Eq. ~11!, which controls the shape of the smeared interfa
ds between the liquid and the gas. The interface thicknesds
should be small compared to all physically relevant len
scales, in order to obtain physically meaningful resu
Clearly, this condition is not yet very well satisfied by o
4-5
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FIG. 2. Phase-field profile corresponding
Fig. 1. One sees the quick rising of the phase fie
from 21 to 1 in the dry region, and the latte
rising at lattice units around 20 in the wet regio
to the right.~The lower left axis corresponds t
the substrate or the horizontal axis of Fig. 1, t
numbering 1, . . . ,96 corresponding to every
fourth lattice point. The numbering on the lowe
right axis corresponds to the numbering on thez
axis of Fig. 1.!
e
th

ow
iz
ei
iu

ed
io
lly
ith

e
n

h
te
is
s

lin

ce

ed
tr
lle
ui
r
i

ied
ase
or

s a
as
and

hn-
presently rather small lattice. We have therefore mad
number of numerical tests to check upon the validity of
results.

First we have checked circular bubbles moving in a fl
field of constant velocity. The bubbles maintained their s
within a few percent traveling over about 100 times th
diameter. Bubbles would not shrink unless their initial rad
was smaller thanR<2 ~corresponding to four lattice units!.
We also noticed the occurrence of ‘‘flotsam’’ as mention
in @16#. Furthermore, we have studied the temporal evolut
of an interface separating the two fluids, with an initia
sinusoidal capillary wave imposed onto the interface w
wave numberq. At sufficiently low viscosities, the amplitud
of that deformed interface should make periodic oscillatio
with a frequencyv5Ag/rq3/2. As soon as the wavelengt
was bigger than about four times the thickness of the in
face ds , the agreement was within a few percent. Th
should actually be a rather sensitive test of the correctnes
the code in general, as well as of the specific way of hand
the free interface.

Also, we have checked the convergence of flat interfa
to the potential minima of Eq.~12!. For this purpose, the
local conservation laws for the two fluids had to be modifi
since otherwise a flat interface cannot move. We have in
duced ‘‘holes’’ at both lateral ends of a flat interface para
to the substrate, by switching off the coupling between fl
and phase field. Fluid then could flow from below the inte
face to above the interface and the interface would relax
position to either of the minima ofUw , while the total
02630
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amount of fluid still was conserved. Finally, we have stud
the possibility to generalize this model to incorporate ph
transitions within the fluid phases together with the flow. F
this purpose, the drift termuW •“f in Eq. ~10! was modified
into uW eff•“f with uW eff5uW 2duW , whereduW was given exter-
nally representing some nonequilibrium driving force time
mobility for the advancement of a reaction front such
evaporation or condensation. All these tests gave stable
numerically reasonable results.

The full wetting-dewetting problem in 111 dimensions
was then investigated and compared with a model of Ca
Hilliard-type. The latter model was defined as Eq.~2! with
a50 and the potentialg(h) taken as Eq.~12!. This gives
explicitly

FIG. 3. Isobars corresponding to Fig. 1.
4-6
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]h

]t
5“•

h3

3h
“@k cos~kh1kh0!2g“2h# ~15!

with k52p/7 andh051.
Note that all parameters in this model also occur in

full hydrodynamic wetting model described above. The
sults of direct simulations of the hydrodynamic model E
~4!–~8! and Eqs.~10!–~14! are then given in Figs. 1–8.

In Fig. 1, we show the initial stages of the dewetti
process, where the originally step-function shaped front
velops a bump~in higher dimensions corresponding to a rim!
and moves to the right towards the fluid layer. The bound
condition at the far right does not allow liquid to flow out o
or into the system.

The pressure distribution is shown in Fig. 3. The m
pronounced effect here again is due to the nonzero widt
the horizontal parts of the interface between liquid and g
The potential Eq.~12! tries to compress the smeared inte
face, which leads to localized pressure gradients. This ef
should be less pronounced when the physically interes
length scales of the problem would be much larger than
computational length scales such as lattice constants an
terface thicknessds . The next plot of this series~Fig. 4!
shows the two-dimensional curvature of the smeared in
face. It is again a two-dimensional field due to the nonz
thickness of the liquid-gas interface. It is obviously locat
in the regions where the profile in Fig. 1 changes from
lower position on the left to the upper position on the rig

FIG. 4. Contours of constant curvature of the S-shaped fr
between the dry and the wet part corresponding to Fig. 1.

FIG. 5. Force field from Eq.~13! in the interface region corre
sponding to Fig. 1.
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~Again one should note that the scales are distorted, as
full 400330 grid points of the lattice are scaled within th
frame displayed here.!

Figure 5 shows the force field resulting from Eq.~13!.
The rectangular area corresponds to the whole lattice n
400 lattice units wide and 30 lattice units high. Note that t
scales in the vertical and horizontal directions are not eq
One sees clearly the relatively wide area~in vertical direc-
tion! over which the force field is nonzero. This correspon
to the interface area of Fig. 2, where the phasef differs from
61.

In Fig. 6, the corresponding flow pattern is indicated. T
flow is most pronounced in the region directly behind t
interface~where the height rises from about 8.5 lattice un
to about 22 lattice units in Fig. 1!, which leads to the forma-
tion of the bump by displacing ‘‘liquid’’ towards the righ
and upward.

Possibly the most interesting results are shown in F
7–9. In Fig. 7, three curves of the displaced interface pro

FIG. 6. Flow pattern corresponding to Fig. 1.

FIG. 7. Dewetting process in 111 dimensions, as in Fig. 1
Comparison of three different viscositiesn58,12,16 at timest
5600, 900, 1200, respectively. The results should fall on one cu
if observation times are chosen to be proportional ton. Apart from
the small wiggles in the tail of the front that result from the hig
lattice constant ofdz50.5, this property is fulfilled quite well. Tak-
ing the height of the filmh57 as a characteristic length scale, th
effective Reynolds numbers reached here are Re50.11, 0.05, 0.03.
All units were given in physical units with a corresponding latti
spacing ofdx5dz50.5.

t
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are shown for three different viscositiesn5$8,12,16% at ob-
servation timest5$600,900,1200%, respectively. All three
results fall on one curve, which is to be expected since
observation times are chosen to be proportional ton. For
smaller viscositiesn&1 the tail of the front tends to form
pronounced wiggles whose asymptotic time behavior is
cleared completely for the time being~see Fig. 9!. Small
viscosities are somewhat problematic in this geometry si
the physical length scales of the resulting vortices are
longer large compared to the present grid size and the in
face thicknessds .

In Fig. 8 we compare the results of the diffusional Cah
Hilliard model for wetting-dewetting, Eq.~15!. The param-
eters for the two models were identical as far as the co
spondence given by Eq.~15! holds. The agreement reache
hereby in Fig. 8 is within about 10% for all relevant obser
ables, which we take as quite satisfactory confirmation of
reciprocity of these two models for sufficiently large visco
ties.

Figure 9 shows the same scenario as Fig. 7 for a so
what smaller viscosity. It is clearly visible that the hydrod
namic aspect of the dewetting process is much more
nounced than before. The interface ‘‘overshoots’’ towa
the equilibrium height and gives rise to spatial oscillations

FIG. 8. Dewetting process in 111 dimensions~full line!, as in
Fig. 1, but now at a later timet51000~physical units!. In compari-
son, we show the result from the diffusion model Eq.~15! ~dotted
line!. Again the original front between the dry and the wet part
the substrate was given as a step function~dashed line!. During the
dewetting process, the front moves towards the wet part, formin
distinct bump on the wet side to the right of the moving front. T
agreement is quite satisfactory, since there were no adjustable
rameters. All units were given in physical units, while the under
ing lattice constants weredx50.5 anddz50.125. The kinematic
viscosity was set ton512.
.
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least as a transient phenomenon. Nevertheless, the ave
shape of the slope is still determined by the limited amo
of fluid that is transported to the right due to viscous frictio

In summary, we have demonstrated the feasibility of t
kind of dewetting problem with a new phase-field approa
We have shown that the (111)-dimensional hydrodynamic
model for dewetting is in reasonable quantitative agreem
with an effective diffusion model for dewetting dynamics
least in the range of Reynolds numbers of order unity a
below. For higher Reynolds numbers, the appearance of
face wiggles modifies the shape of the interface and creat
pronounced deviation from the viscous-creeping limit. The
wiggles are to be expected in the fully three-dimensio
case and could change the pattern-formation process sig
cantly.

We are currently extending these simulations to the fu
three-dimensional situation, employing more efficient in
grators as ADI and multigrid methods, which we partly h
already used in previous phase-field model calculations. T
should allow for a comparison of pattern formation behav
in the limit of low and high Reynolds numbers.
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FIG. 9. Dewetting process in 111 dimension as in Fig. 7, bu
with viscosityn50.5 at timest5180, 300, 420, respectively. Th
physical length scales have been increased in order to minim
effects of the interface width. All units are given in physical uni
Effective Reynolds numbers are of order 3.
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