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Dewetting hydrodynamics in 1+1 dimensions
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A model for the phase transition between partial wetting and dewetting of a substrate has been formulated
that explicitly incorporates the hydrodynamic flow during the dewetting processtih @limensions. The
model simulates a fluid layer of finite thickness on a substrate in coexistence with a dry part of the substrate
and a gas phase above the substrate. Under nonequilibrium *“dewetting” conditions, the front between the dry
part and the wet part of the surface moves towards the wet part inducing hydrodynamic flow inside the wet
layer. In more general terms, the model handles two immiscible fluids with a freely movable interface in an
inhomogeneous external force field. Handling the interface by a new variant of the phase-field model, we
obtain an efficient code with well-defined interfacial properties. In particular(fitke) energy can be chosen
at will. We demonstrate that our model works well in the viscosity range of creeping flow and we give
qualitative results for the higher Reynolds numbers. Connections to experimental realizations are discussed.

DOI: 10.1103/PhysReVvE.63.026304 PACS nunier4d7.20.Ma, 68.08.Bc, 64.60.My, 83.50.Lh

[. INTRODUCTION of two-dimensional interfacial pattern formation under iso-
tropic conditiong/10,12. Our interest is now to understand
Wetting and dewetting of a substrate by a film of fluid is what happens if the conditions for replacing the Navier-
a particularly interesting process of pattern formation withStokes equations by an effective diffusion equation are no
obvious significance in many technical applications of sur{onger valid. For higher Reynolds numbers, significant
face coating. In this phenomenon, various ingredients othanges due to increasing vorticity in the inertial range of
equilibrium thermodynamics, diffusion and convection trans-wavelengths should be expected.
port on different time scales, together with nonlocal effects We have constructed a model together with a numerical
and external fields have to be considered simultaneouslscheme that allows us to treat the full Navier-Stokes equa-
Furthermore, the freely mobile interface between the fluictions for this wetting-dewetting problem. As a first step and
wetting layer and the gas phase above the substrate is sus- keep the computational effort as low as possible, the
ceptible to various forces, leading to interface-driven instapresent investigation is still restricted to #&l+1)-
bilities such as, for example, the Marangoni effect. dimensional system that corresponds to a planar cut perpen-
In the phenomenon gfartial wetting[1] considered here, dicular to the substrate. Therefore, it cannot be directly re-
a thin film of well-defined thickness is formed on the surfacelated to the pattern-formation experiments described above
of a substrate. The forces responsible for this film are irsince these involve real three-dimensional instabilities and
addition to the cohesive forces between water molecule Vamaterial redistribution. However, since our approach to the
der Waals forces and polar forces-3] from the substrate. full dewetting problem even now incorporates the regime
The statics and dynamics of such a film on a substrate hawghere the full Navier-Stokes equations come into play and
been discussed in detail, e.g., by Sharma and Jafdéel dominate the overall behavior, it already can give first in-
Israelachvili[5], Forgacset al. [1], and by De Gennef2].  sights into the general physics of these systems, which have
Recently, beautiful experiments have been performed byot been treated so far. Even though we are still restricted to
Lipsonet al. [6], Herminghaust al. [8], continuing and ex- a simple(1+1)-dimensional description, one still can think
tending earlier work by ReitdQ] and Brochard-Wyarét al.  of experimental realizations where this geometry is enforced
[3]. In the experiments of Lipson’s groyp], it was found by some external conditions. A possible realization would be
that the patterns observed correspond to seaweed patterie dewetting of a thin film starting from a linear front,
discovered recently for the case of diffusional transpb@{. ~ which is induced by a short heat pulse of a straight wire
This is to be expected since in the limit of creeping flow within the plane of the fluid. Clearly this description is only
corresponding to low Reynolds numbers or high viscosityyvalid as long as no front instabilities occur. We plan to ex-
the hydrodynamic flow equation for dewetting degenerates teend our model to a full three-dimensional description in
a diffusion equation with an effective diffusion constant in- order to facilitate pattern-formation simulations and quanti-
versely proportional to the viscosity. This is quite analogougative comparisons to the experiments mentioned above.
to Darcy’s law of flow in porous media. Our x coordinate represents the direction parallel to the
As we have demonstrated, this effective diffusion equasurface of the substrate, which is locatedzat0. The z
tion, being of Cahn-Hilliard-typ¢11], corresponds in a lin- coordinate represents the normal direction away from the
ear approximation to the growth model studied in the contexsubstrate into the gas phase. Since the energetic properties of
the system are different close to the substrate and far away
from the substrate, we have essentially to distinguish be-
*Present address: Max Planck Instittir fkomplexer Systeme, tween three different phases: the remote gas phase, the wet
Dresden, Germany. layer on the substrate, and the dry region on the substrate.

1063-651X/2001/6@)/0263049)/$15.00 63 026304-1 ©2001 The American Physical Society



MULLER-KRUMBHAAR, EMMERICH, BRENER, AND HARTMANN PHYSICAL REVIEW E63 026304

The latter two phases can be conveniently described by wet part of the surface. This leads to the evolution equation
tanh)-shaped height profile above the substrate as an env4,6] for the film variableh(x,y;t):
lope over the liquid film. In this sense the wet surface (

— ) corresponds to a moderately thick fluid layer, while thegh h® _[dg(h) ) dg(h) 5
dry surface k— — ) corresponds to an extremely thin fluid 7 = V- 377 dh YWoh|—al —p=—yVh—u(p)|.
layer adsorbed on the substrate. The tanh-shaped profile then )

represents a front separating the wet and the dry region near

x=0 under equilibrium conditionsOf course, the precise  The first part of Eq(2), proportional to the inverse vis-
profile finally results from the solution of the model; it may cosity 7~ * of the liquid film, describes a creeping motion of

practically differ from a tanh form.Under nonequilibrium 3 i fiim flow on the substrate. Note that a relaxation term
conditions the profile will advance, hereby increasing the dry, 5o tional toa has been added. This term alone guarantees
area on the substrate under dewetting conditions and Vicgat 5 homogeneous liquid film will relax to its equilibrium
versa. . . _value by evaporation or condensation. Forh.(p), this
The paper is organized as follows. In Sec. Il, we describgg , anishesu(p) is the chemical potential of the vapor.
the basic model in more detail. In Sec. lll, we explain our ., 16 (aimosj dry area, the contributions of both terms to
general scheme of hydrodynamic modeling, which is fol-yhe tota) flow and evaporation of material can be basically

lowed by a section containing the specific modifications toneglected, because of the small valuehof, typically less

handlg the dewettllng procegsec. IV). In Sec. V, we present than one monolayer of adsorbed fluid. Inside the wet area,
and discuss our first results. we can to lowest order linearize=h.[1+u(x,y)], whereu
is now a small deviation from the asymptotic equilibrium
II. BASIC MODEL IN CREEP FLOW value h..(p) in the liquid. SinceVh.(p)=0, the only sur-
] ) ) ) . viving terms are linear i and its spatial derivativegu and
In this section, the effective equations of motion for a Ay, Therefore, inside the wet area, the evolution equation for

drying thin film originally wetting a substrate are summa- ihe variable part of the height variabld becomes
rized for the limit of high viscosity or creeping flow. These

equations are equivalent to the one-sided model of diffu- au
sional growth with an effective diffusion coefficient that de- — =DgAU— A glU. 3)
pends on the viscosity and on the thermodynamical proper- at
ties of the thin film.
According to the description given in Shar] and De  Here we have dropped the termsyAu since the effective
Genneq 2], there is a possibility for the almost dry part of diffusion constanD ¢= (h3/37){d?g/dh?}+ a7y is positive
the solid substrate to be in equilibrium with the wet part,and dominates the long-wavelength behavior over the fourth-
which is in fact a thin(but macroscopicfilm of liquid. Both ~ order term. The relaxation coefficient dss= a{d?g/dh?}.
parts(dry and wet on the solid substrate are separated by aDerivatives are taken around the equilibrium value h,.
front, which can be described by an interface height variabléNote that Eq(3) is precisely the equation of motion studied
h(x) with x being the coordinate across the front from thein [13], leading to seaweed patterns.
dry to the wet part. Towards the dry part, the height variable Of course, this approximation holds only inside the wet
goes to a very small value_ ; towards the wet part, the film region, not directly at the dry-wet front. This interface region
thickness goes to an equilibrium valog(p) for given pres-  gives rise to a profild(x) similar to a tanh function. The
surep with a coexisting vapor phase. At a specific pressurgising of the tanh profile from the dry to the wet part occurs
Po, the liquid film can additionally be in equilibrium with the over a distance short compared to the typical patterns being
(almos} dry surface. The corresponding thickness of the webbserved in the dewetting process. In the so-called sharp-
film is then defined af,=h..(py). For lower vapor pres- interface limit, we can replace this profile by a sharp inter-
sure, the equilibrium film thickness,(p) would decrease to face between the dry and the wet part, but must add the
a metastable value smaller thhg Therefore, the stable dry corresponding boundary conditions to the equation of motion
area would expand at the cost of the wet area. This is th€3) for the wet side. Obviously, the boundary conditions con-
dewetting phenomenon under consideration. sist of a conservation law that guarantees that a displacement
We assume a surface tensigro exist between the liquid of the dry-wet front must locally conserve the fluid. Under
and the vapor. The free energy of the film can then be writteglewetting conditions, this leads to a swelling of fluict 0 at
as the interface. The second condition clearly comes from the
surface tensiony, which tends to keep the dry-wet front
y straight. This is just the usual Gibbs-Thomson condition for
sz [g(h(x,y))+ =|Vh|?}dx dy, (1)  an interface, with the capillary length being approximately
2 do~7y/[{d?g(h)/dh?}/], where / is the thickness of the
dry-wet interface or front, and the dimensionless driving
where g(h) has two minima, anck andy are coordinates force isA=(hy—h.,)/hy. In summary, we have for this vis-
within the plane of the substrate. cous fluid-flow problem of surface dewetting exactly the
In equilibrium a double-tangent construction tih) same equations as for the diffusional growth of an isotropic
gives the two solutionk _ for the dry part andhy(p) for the  solid.
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Ill. HYDRODYNAMICS OF TWO-FLUID SYSTEMS one would also be possihleThis variation takes place over
_ . . the interface thickness,. The normal vecton to the inter-
Incompressible hydrodynamic flows with a free interfaceface is defined as
as considered here are described by the incompressible
Navier-Stokes equations ﬁ:v¢/|v¢|, (6)
Ju . .1 o which can directly be used for numerical approximations
7 T V)u=—(=Vp+pAutfy, (4)  when all fields are defined in discretized form on a regular
p lattice. Since the normal vector to the interface is only
needed at the interfacex€xs), we typically encounter a
combination of normal vector and function, which can be
described simply by

V-u=0. (5)

In these equationsﬁ is the velocity vector ang is the

pressure. The densify and the kinematic viscosity= 7/p NS(X—Xs) =1V . 7)
are constant inside each of the two fluids, but may vary dis-
continuously across the interface. The fongein principle With this definition, a surface forcéso only due to the

can be an arbitrary local force field defined everywhere inlocal curvatureK of the interface and the surface tensipis
space just like, for example, a gravitational force. Here wegiven by
assume that it is a force localized at the interface between the
fluid on the substrate and the gas. Any bulk force, which is foo=yKNS(X—Xg). (8
the gradient of some fixed potential, will be immediately
compensated by a change in the pressure and therefore givesThis allows us to vary the surface tensigrindependent
no contribution to the equation of motion E@,). of the phase-field parameters as compared \\@#. The
The question now is how can this interface be handledractical evaluation of the curvatuke is done via the defi-
conveniently by numerical methods? We follow here con-nition that the curvature of a linéin two dimensions is
cepts given in Refd.14—-16, together with some ingredients equal to the divergence of the field of normal vectors along
of our own experience in phase transformatifitig. We use that line. This can be generalized to a two-dimensional field
here what is known in fluid dynamics as thelume-of-fluid  of normal vectors a& =V -n. The curvature is then evalu-
approach 15,16,18—-2Q which in the theory of phase tran- ated everywhere in théx,z} plane by straightforward dis-
sitions corresponds to thehase-field modelor two-phase  cretization. Finally, a smoothing operation is performed on
systems and generalizatiof21-23. A consistent phase- the curvature field inside the interface region. This is done
field model with hydrodynamic flow was recently formulated similarly to a diffusion time step so that the curvature field is
[24]. This method smears out the sharp interface over somgimost constant in normal direction across the interface.
nonzero but finite thicknesd,, so that the material param- The phase field now couples to the Navier-Stokes equa-
eters do not jump discontinuously but vary continuouslytion (4) via the surface forcés),
across that interface. Note that the thickness of this interface
ds between two phases in reality corresponds to a few atomic FS: Fso' 9
units. For computational purposes, it should therefore be
small compared to all macroscopic lengths occurring in theand the Navier-Stokes equation couples back to an equation
model, since the Navier-Stokes equations correctly describef motion for the phase field via an advection equation,
only macroscopic properties of hydrodynamic systems. We s
will return to this point in the discussion of the results. d -
In comparison I[\)/vith sharp-interface methods, one loses a ot Vo+Fid}. (10
factor approximately between 10 and 100 in computational
efficiency, but the advantage of much simpler programmingA nonlinear operatoF{ ¢} has been added here for numeri-
of multiphase problems seems to be worth the expendituresal reasons in order to locally maintain a well-defined
Similar arguments hold for the alternative lattice-BoltzmannS-shaped profile ofp in normal direction across the inter-
methods [25,26 or a recent molecular-dynamics study, face, as will be made explicit below.
where hole formation and the initial stage of dewetting has In principle, Eqs(4)—(10) form a closed system of equa-
been simulated27]. Both methods reconstruct the macro- tions in space and timéwvith appropriate boundary and ini-
scopic equations from the microscopic dynamics of particldial conditions, and assuming for the moment all materials
collisions. The computational efforts of these smearedparameters to be homogeneous and constapart from the
interface methods seem to be comparable. However, we prevaluation of the pressure gradiévip in Eq. (4). We have
fer here the somewhat more direct and intuitive access by thesed a simple marker and cell meth®#AC) scheme for the
phase-field approach. moment, but plan to implement more complex schemes
The basic idea of the phase-field method is that a phagd6,20 in the near future to solve the Poisson equation,
field ¢ varies across the liquid-gas interface continuouslywhich one obtains for the pressure after applying a further
from ¢=—1 for the liquid to¢p=1 for the gagthe associa- divergence operator onto E@). We have also kept the den-
tion of numbers to the phases is of course arbitrary; zero anslities in the liquid and in the “gas” equal for the moment, as

026304-3



MULLER-KRUMBHAAR, EMMERICH, BRENER, AND HARTMANN PHYSICAL REVIEW E63 026304

well as the kinematic viscosities. This may sound a bit un- 24 T T T T T T T

physical at first, but it does not change substantially the basic ., J

physical problem of dewetting hydrodynamics, as we will

discuss in the final section. The reason for this present sim.g 20 1

plification is just to facilitate computatio(see, for example, & 18 g

[16]). Therefore, we will maintain the notion “gas” and E 16 i

“liquid” to discriminate between the phases, although their ©

materials parameters for the moment are just equal. £ U 1
The numerical implementation closely followed earlier 5 12 i

experienced 16,20,28, with our simpler use of a MAC '§0

scheme and forward integration instead of multigrid-pressure—g 10 T

evaluation and implicifalternating-direction implicit method 8 -

(ADI)] schemes, which we plan to incorporate in the future. . . . . . . .

As tests we have reproduced features describ¢d6h fur- 0 50 100 150 200 250 300 350 400

thermore, we have confirmed the dynamical spectrum of cap z

illary surface waves within a few percent. FG. 1. D . indl di . The original
To close this section, we briefly describe the numerical - 1. Dewetting process In 'mensions. The origina
method to keep a well-defined S-shaped interface profile iIgront separating the dry and wet parts of the substrate was given as

- . a step function, at lattice position 100. During the dewetting pro-
the ¢ variable by the operatdf{¢} in Eq. (10). Based on cess, the front moves towards the wet part at the right. The units

phr_ewousl_experlence with phase-field simulations, we defln%Jiven here are lattice units, one lattice unit corresponding to one-
this nonlinear operator as half “arbitrary unit” (dx=0.5, v=12).

1 found all tests performed to be in sufficient agreement with
F{¢p)= ;{525~V(ﬁ‘v¢)+vo(¢—¢3)} (11)  the results given by Lafauriet al. [16].

IV. HYDRODYNAMIC MODEL FOR WETTING

with parameters=2,7=0.4V,=1 (the precise values are |, this section, we now describe the specific modifications
not critica). Here &2 multiplies a second-order derivative in of the general hydrodynamic model introduced above in or-
normal direction across the interface, which has a tendencyer to treat the wetting-dewetting process.
to smooth out the phase field, while the term withtries to In equilibrium thermodynamics, partial wetting of a sub-
keep¢ as a step functiogp=*+1. Note that in contrast t0  strate means the possibility of a thin wet layer of finite thick-
the usual phase-field model$7,21,24, we decompose the ness to exist on the substrate in coexistence with a dry part of
spatial variations of the phase fieltl near the interface  the substrate and a gas phase above the liquid film. Since we
~0) into a part parallel to the interface and a part normal tqyant to model the front between the dry and the wet part by
the interface. The two Nabla operators in Ebfl) only work g tanh-like profile, we will describe the dry part by a height
in the direction normal to the interface. Dropping here then(x) of the wetting layer being almost zero, while for the
tangential terms in the spatial variations, we have a modejet part we assume a height of nonzero but finite thickness.
with vanishing surface tension. This holds in the physicallyapove that tanh-like profile, we have a pure vapor phase.
interesting limit, where the radius of interface curvature iSNote that both the wet and the dry part of the substrate are
larger than the interface thickness. We are therefore free tgoyered with fluid, the difference being that the fluid layer on
choose the interface free energy. In addition, the model may,e “dry” part is much thinner(maybe even less than one
be used as a basis to study membranes, which have interfaggymic unit practically than the wet part.
stiffness rather than interface tension. To be explicit, we show in Fig. 1 such a profile where the
In the stationary casevith u=0), Eq.(11) together with  horizontal axisx is the position on the substrate while the
Eg. (10) give a profile p~tanh,/dy) in normal direction vertical axis represents the heidi(tx) or the direction away
across the interface, with well-defined interface thicknessrom the substrate in the normal direction. The units here are
ds~ &/\V,. In principle, this operator does not exactly con- given in lattice units of the computational grid (4080),
serve the quantityp, so one should have once more a La-which corresponds with a lattice constanidof= 0.5 “physi-
placian operating over the whole right-hand side of @d).  cal” units to 200x 15 “physical” units of distance.
Since this would increase computing time, we used a simple The initial profile is given as a step function jumping with
modification to keep this effect small: In the space- and timeincreasingx at x=100 from z=8.5 to z=20.5, all values
discretized version, we set this operakdrp} exactly equal given in lattice units §x=0.5). Note that the equilibrium
to zero during one time step if its absolute value throughouheight (to be defined belowof the wet part would corre-
the computational lattice does not exceed a critical thresholdpond to 22.5 lattice unit&corresponding to 11.25 “physi-
of 6Fy=2. Again, this numerical value is not critical. A cal” units) so that the structure initially is in a nonequilib-
circular droplet of radiusR=2.5, for example, will not rium condition. Below and to the right of the step function of
shrink to zero due to a remaining effective surface tensiorig. 1 is the “liquid” with ¢=—1; above and to the left is
introduced by the discretization of E@l1). In total, we the “gas” phase with¢=+1.
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The equilibrium positions of the gas-liquid interface in the appropriately to guarantee the numerical stability of the dif-
wet and the dry regions of the substrate are defined by aferential equations involved. The surface tension was
external double well potentiad(h(x)) acting on the inter- =3.18 and the wall potential near the two minima was taken
face. It summarizes the Van der Waals and polarizatiorys U,,=sinkz+kz) with k=27/7, zo=1 and with minima
forces due to the substrate and is explicitly described inelevant for the “dry” part and the “wet” part az=4.25,
[2,4,7,29. However, for the study of scaling properties 11 25 This corresponds to a total thickness of the wet layer
(which do not depend in detail on specific material proper, coexistence with a dry surface part@i=7 in our physi-
ties) it is only necessary to identify the potential near its .5 nits. Note that assigning specific values to the units of

Equilibriuml ?03'“0”5' E‘e equilibrium positions._ a{_‘d dx anddt fixes all length scales, the time scales, and veloci-
”(.p) result from a double-tangent constructior o). 9 " ties. In these units, the kinematic viscosity was set to values
facilitate the location of these minima, we replaced this POpetweenr=05 and 16: the density was sete- 1

tential by a potential symmetrical in the two minima and The boundary conditions for the fluid were sticking con-

sitting on the same energy level: ditions or velocity zero on both the bottom and on the sides

U,,= U, sin(kz+kz). (12) of the grid. On the top of the grid we applied a fixed pressure
condition(bearing in mind the incompressibility of the flyjd

It varies in direction normal to the substrate and is constanthereby granting a free-flow condition at the top.

parallel to the substrate. This potentis), corresponds to the The complete system of equations then are Edjs-(8)

potentialg(h(x,y)) in Eq. (1), where thez coordinate in Eq. and Eqs(10)—(14). We have confirmed numerically that the

(12) corresponds td(x) in g(h). (In our present work we forces give a stationary nonmoving S-shaped front profile in

only keep one spatial coordinateat the momen}.Note that  the{x,z} plane under equilibrium conditions as desired.

adding a constant gradient in E®) as g(h)—g(h)+ch

with arbitrary c only changes the definition of the chemical

potential u(p)— w(p)+c of the gas and therefore corre- V. RESULTS AND DISCUSSION

sponds to a trivial change. . h i ion ideall ”
In principle, this potential should have only two minima, AN €xperiment on the dewetting transition ideally wou

one within one atomic layer close to the substrate and one $fart from an equilibrium condition with a dry and a wet part

distance of some fonanometers above the substrate. Thef the surface in coexistence. The heights of the liquid layer
n the dry part would be practically zero, and of some finite

one minimum corresponding to the gas phase very close )

the substrate would be much narrower than the other Ongalue (of order of microns, for exampleon the wet part.

corresponding to the wet layer. For reasons of testing th&lonequilibrium is then achieved by suddenly lowering the
numerical procedure, we took here a potential with fully92S Pressure above the substrate. The dry part of the sub-
symmetrical minima neaz=1{4.25,11.25 while the other strate would not react significantly, while the wet part would

oscillations of that sine potential were irrelevant within our €/aPorate to a new equilibrium at a somewhat lower height

numerical investigations. of thg Ilqwd Iayer.. . . .
This potential produces a force This is the starting condition for our simulation: We keep

the height of the dry part positioned in the minimum of the
F o Se_ e \R.TR. otential Eq.(12) close to the origin while the height of the
fa=d0x=x9n-[n-VUw(2)] 13 \r/)vet part isqshifted out of the mir?imum to a ingh?Iy smaller
onto the interface between the liquid and the gas phase. Th&lue.
force is proportional to the gradient of the potential but acts In this situation, the dry part is energetically favorable so
in normal direction of the liquid-gas interface only, other- that the front between the dry and the wet part starts moving
wise it would produce a constant tangential flow in interfacetowards the wet part at the right in Fig. 1. Because of con-
regions with normal direction parallel to the substréga-  Servation of fluid on both sides of the liquid-gas interface,
rangoni effect In equi”brium’ this force must compensate such a displacement of the Wet-dry front leads to a redistri-
for the forcesf, in Eq. (8) originating from interface curva- bution of material thereby creating a pronounced bump. In
ture, which also act in normal direction to the interface. the full three-dimensional Scenario, this redistribution ulti-
The total force acting on the interface is then the sum ofmately leads to the patterns observed in the dewetting experi-
the curvature force Eqs) and the force Originating from the ments. Clearly in our still two-dimensional scenario, this pat-

external potential Eq(13): tern formation cannot be fully described, yet already basic
predictions about the low viscosity behavior can be made, as
fo=fo+fer. (14) Wil be seen below.

There are several physical parameters in the model in-
Some basic parameters were set as follows. The latticeluding the density and the viscosity of the fluid, as well as a
consisted of typically 30 units in direction normal to the number of numerical parameters such as the contgi
substrate and up to 1200 in a direction along the surface dtq. (11), which controls the shape of the smeared interface
the substrate. d between the liquid and the gas. The interface thickidgss
The geometry was for the moment only two-dimensional.should be small compared to all physically relevant length
The lattice constant was set in physical unitsdas=0.5 or  scales, in order to obtain physically meaningful results.
smaller and the time step for forward integration was chose€Clearly, this condition is not yet very well satisfied by our

026304-5



MULLER-KRUMBHAAR, EMMERICH, BRENER, AND HARTMANN PHYSICAL REVIEW E63 026304

N\
NS
W

W
NN
\\\\\\\\\\\\\\\
N
= \\\\\i\\\\\:t:\\\\\\
A

W
N\
N\
N
\

W

N

NN
RN
N

N
N
NN
N
NN
\
—_ =\

N\

N
\
A\

N
N\
N

\
\

\

N

\
\
W
N

N
<V
\
WV

L
i,

FIG. 2. Phase-field profile corresponding to
-6 Fig. 1. One sees the quick rising of the phase field
.4 from —1 to 1 in the dry region, and the latter
rising at lattice units around 20 in the wet region
to the right.(The lower left axis corresponds to
-0 the substrate or the horizontal axis of Fig. 1, the
.=2 numbering 1...,96 corresponding to every
fourth lattice point. The numbering on the lower
right axis corresponds to the numbering on the
-6 axis of Fig. 1)

presently rather small lattice. We have therefore made amount of fluid still was conserved. Finally, we have studied
number of numerical tests to check upon the validity of thethe possibility to generalize this model to incorporate phase
results. transitions within the fluid phases together with the flow. For
First we have checked circular bubbles moving in a flowthis purpose, the drift term- V ¢ in Eq. (10) was modified
field of constant velocity. The bubbles maintained their sizgqq Jeﬁ'v¢ with Jeﬁ: U— SU, where 5U was given exter-

within a few percent traveling over about 100 times theirpy representing some nonequilibrium driving force times a
diameter. Bubbles would not shrink unless their initial rad'usmobility for the advancement of a reaction front such as

was smaller thaiR<2 (corresponding to four lattice unjts evaporation or condensation. All these tests gave stable and
We also noticed the occurrence of “flotsam” as me”t'onednumerically reasonable results.

in [16]. Furthermore, we have studied the temporal evolution The full wetting-dewetting problem in¢1 dimensions

of an interface separating the two fluids, with an initially \ya5 then investigated and compared with a model of Cahn-
sinusoidal capillary wave imposed onto the interface W'thHiIIiard—type. The latter model was defined as Ef) with

wave number. At sufficiently low viscosities, the amplitude ,— o and the potentiag(h) taken as Eq(12). This gives
of that deformed interface should make periodic osciII<';1tionseXp“Cit|y

with a frequencyw=\y/pq®2 As soon as the wavelength
was bigger than about four times the thickness of the inter-
face dg, the agreement was within a few percent. This

should actually be a rather sensitive test of the correctness @
—— —

the code in general, as well as of the specific way of handling
the free interface.
Also, we have checked the convergence of flat interfaceg
to the potential minima of Eq(12). For this purpose, the
local conservation laws for the two fluids had to be modified \

since otherwise a flat interface cannot move. We have intro % —)

duced “holes” at both lateral ends of a flat interface parallel ——

to the substrate, by switching off the coupling between fluid K/Kﬂj |

and phase field. Fluid then could flow from below the inter- ISOBARS

face to above the interface and the interface would relax its

position to either of the minima ob,,, while the total FIG. 3. Isobars corresponding to Fig. 1.
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FIG. 4. Contours of constant curvature of the S-shaped front FIG. 6. Flow pattern corresponding to Fig. 1.
between the dry and the wet part corresponding to Fig. 1.
(Again one should note that the scales are distorted, as the
Jh h3 full 400X 30 grid points of the lattice are scaled within the
= =V. %V[k cog kh+khg) — yV2h] (15  frame displayed herg.
Figure 5 shows the force field resulting from EG.3).
L _ The rectangular area corresponds to the whole lattice now,
W|t|r\1] k=2m/7 andho=1. o : 400 lattice units wide and 30 lattice units high. Note that the
ote that all parameters in this model also oceur in thescales in the vertical and horizontal directions are not equal.
full hydrodynamic wetting model described above. The re-

sults of direct simulations of the hydrodynamic model Eqgs One sees clearly the relatively wide area vertical direc-
(4)~(8) and Eqs.(10)—(14) are then given in Figs. 1-8. tion) over which the force field is nonzero. This corresponds

In Fig. 1, we show the initial stages of the dewettingtfthe interface area of Fig. 2, where the phasgiffers from

process, where the originally step-function shaped front de=
velops a bumgin higher dimensions corresponding to a yim
and moves to the right towards the fluid layer. The boundar

condition at the far right does not allow liquid to flow out of to about 22 lattice units in Fig.)1which leads to the forma-

or into the system. . - AR .
The pressure distribution is shown in Fig. 3. The mosttlon of the bump by displacing "liquid” towards the right
r;[md upward.

pronounced effect here again is due to the nonzero width o Possibly the most interesting results are shown in Figs.

the horizontal parts of the interface between liquid and ga : ; . :
The potential Eq(12) tries to compress the smeared inter-s7 9. In Fig. 7, three curves of the displaced interface profile

face, which leads to localized pressure gradients. This effect 19
should be less pronounced when the physically interesting

length scales of the problem would be much larger than the

computational length scales such as lattice constants and ir§ 10
terface thicknessl;. The next plot of this seriegFig. 4)
shows the two-dimensional curvature of the smeared inter-&
face. It is again a two-dimensional field due to the nonzeros
thickness of the liquid-gas interface. It is obviously located &
in the regions where the profile in Fig. 1 changes from the-<
lower position on the left to the upper position on the right. 5

In Fig. 6, the corresponding flow pattern is indicated. The
flow is most pronounced in the region directly behind the
¥nterface(where the height rises from about 8.5 lattice units

f:

nter:

hei,
W b Ot O = 0 W

..............

i ! 0 50 100 150 200

RIS P FIG. 7. Dewetting process in11 dimensions, as in Fig. 1.
..... T Comparison of three different viscosities=8,12,16 at timest
: =600, 900, 1200, respectively. The results should fall on one curve
if observation times are chosen to be proportionadté\part from
the small wiggles in the tail of the front that result from the high
lattice constant oflz= 0.5, this property is fulfilled quite well. Tak-
FORCE FIELD ing the height of the filmth=7 as a characteristic length scale, the
effective Reynolds numbers reached here are &1, 0.05, 0.03.
FIG. 5. Force field from Eq(13) in the interface region corre- All units were given in physical units with a corresponding lattice
sponding to Fig. 1. spacing ofdx=dz=0.5.
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g 9| ] 218§
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5t g {= §§§ ----------
ﬁ 5 B = -~ 8 s/ t = 4 .......... —

4 e i 6 1 L ! 1 1

0 200 400 600 800 1000 1200
3 1 1 1 xT
0 50 120 150 200 FIG. 9. Dewetting process in11 dimension as in Fig. 7, but

with viscosity v=0.5 at timest=180, 300, 420, respectively. The

FIG. 8. Dewetting process in1 dimensiondfull line), as in  physical length scales have been increased in order to minimize
Fig. 1, but now at a later time= 1000 (physical unit$. In compari-  effects of the interface width. All units are given in physical units.
son, we show the result from the diffusion model Etp) (dotted  Effective Reynolds numbers are of order 3.
line). Again the original front between the dry and the wet part of
the substrate was given as a step functidashed ling During the ~ least as a transient phenomenon. Nevertheless, the average
dewetting process, the front moves towards the wet part, forming ghape of the slope is still determined by the limited amount
distinct bump on the wet side to the right of the moving front. The Of fluid that is transported to the right due to viscous friction.
agreement is quite satisfactory, since there were no adjustable pa- In summary, we have demonstrated the feasibility of this
rameters. All units were given in physical units, while the underly-Kkind of dewetting problem with a new phase-field approach.
ing lattice constants werdx=0.5 anddz=0.125. The kinematic We have shown that the (11)-dimensional hydrodynamic
viscosity was set to=12. model for dewetting is in reasonable quantitative agreement
with an effective diffusion model for dewetting dynamics at
least in the range of Reynolds numbers of order unity and
below. For higher Reynolds numbers, the appearance of sur-
{ace wiggles modifies the shape of the interface and creates a
pronounced deviation from the viscous-creeping limit. These
wiggles are to be expected in the fully three-dimensional
gase and could change the pattern-formation process signifi-
cantly.

are shown for three different viscosities={8,12,16 at ob-
servation timest={600,900,120p respectively. All three
results fall on one curve, which is to be expected since th
observation times are chosen to be proportionab td=or
smaller viscositiesr<1 the tail of the front tends to form
pronounced wiggles whose asymptotic time behavior is no
cleared completely for the time beingee Fig. 9. Small

viscosities are somewhat problematic in this geometry sinceh We dgre cur ren':ly _?xtri_ndmg thelse_ 5|mulat|onsff_to_ thte _fo[IIy
the physical length scales of the resulting vortices are ndnree-dimensional situation, employing more efficient inte-

longer large compared to the present grid size and the inteflrators as AD.I and '_““'“g”d met_hods, which we p?”'y had.
face thicknessi . already used in previous phase-field model calculations. This

In Fig. 8 we compare the results of the diffusional cahn-Should allow for a comparison of pattern formation behavior

Hilliard model for wetting-dewetting, Eq.15). The param- in the limit of low and high Reynolds numbers.

eters for the two models were identical as far as the corre-

spondence given by E@15) holds. The agreement reached ACKNOWLEDGMENTS
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